MATH PRACTICE SET - 5 BY ALOK SIR

1.

Let AB is the chord and 0 is the centre of circle.
$\mathrm{OM}=12 \mathrm{~cm}$ and $\mathrm{OB}=15 \mathrm{~cm}$ (Given)
In $\triangle \mathrm{BOM}, \mathrm{BM}^{2}=\mathrm{OB}^{2}-\mathrm{OM}^{2}=15^{2}-12^{2}=81$
$\Rightarrow \mathrm{BM}=9 \mathrm{~cm}$
2. From option (1)
$x^{4}-2 x^{3}+3 x^{2}-4 x-4$ is divisible by $x-2$ if it gives 0 for $x=$
2
$x^{4}-2 x^{3}+3 x^{2}-4 x-4=(2)^{4}-2(2)^{3}+3(2)^{2}-4(2)-4$
$=16-16+12-8-4=0$
So, option (1) is the answer.
3. Total SP $=\mathbf{5 4 0 0} \times \mathbf{1 . 1 5}=$ Rs $\mathbf{6 2 1 0}$

SP of $1 / 3 \mathrm{rd}$ of rice $=1800 \times 0.95=\operatorname{Rs} 1710$
CP of remaining rice $=5400 \times 2 / 3=$ Rs 3600
SP of remaining rice $=6210-1710=$ Rs 4500
Profit \% $=(4500-3600) 73600 \times 100=25 \%$
4. Net price after two successive discounts $=20000 \times$ $\mathbf{0 . 8 5} \times \mathbf{0 . 8 0}=13600$
Net cost price $=13600 \times 1.08=14688$
Selling price $=14688 \times 1.12=16450.56$
5. In the following figure $m||n|| p$. Find the value of B in terms of A.
A. $90+\mathrm{A}$
B. $90-\mathrm{A}$
C. $90+2 \mathrm{~A}$
D. $180-\mathrm{A}$
5.

In triangle $\mathrm{SQU}, \angle Q=A, \angle S=90$. Hence $\angle S U Q=90-A$ $\angle Q U V=180-\angle S U Q=90+A$ (Linear pair)
Now, n||p. So $\angle B=90+A$
6. Let the number to be added be a

Hence, $(2+a) /(18+a)=(3 / 11)$
Or, $22+11 \mathrm{a}=54+3 \mathrm{a}$
Or, $8 \mathrm{a}=32$
Or, $\mathrm{a}=4$
7. $3 \cos ^{2} A+7 \sin ^{2} A=4$

Or, $3 \cos ^{2} \mathrm{~A}+3 \sin ^{2} \mathrm{~A}+4 \sin ^{2} \mathrm{~A}=4$;
Or, $3\left(\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}\right)+4 \sin ^{2} \mathrm{~A}=4$
Or, $3(1)+4 \sin ^{2} \mathrm{~A}=4$
Or, $4 \sin ^{2} \mathrm{~A}=4-3$

Or, $\operatorname{Sin}^{2} A=1 / 4$
Or, $\sin \mathrm{A}=\sqrt{1 / 4}=1 / 2$
So, $A=30^{\circ}$ Thus, $\cot 30^{\circ}=\sqrt{3}$.
8. Side of square $=\sqrt{121}=11 \mathbf{~ c m}$

Length of wire $=$ circumference of circle.
$44=2 \pi \mathrm{r}$ or $\mathrm{r}=(44 \times 7) /(2 \times 22)=7 \mathrm{~cm}$
Hence, area of circle $=\mathrm{pr}^{2}=22 / 7 \times 7 \times 7=154 \mathrm{~cm}^{2}$
9. Given, $\mathbf{a}-\mathbf{b}+4=\mathbf{0}$
$\Rightarrow \mathrm{b}=\mathrm{a}+4$
$(x-a)(x-b)=1$
$=>(x-a)(x-a-4)=1$
$=>\mathrm{x}-\mathrm{a}-4=1 /(\mathrm{x}-\mathrm{a})$
$=>(x-a)-4=1 /(x-a)$
$=>(x-a)-1 /(x-a)=4$
Squaring both sides:
$=>(\mathrm{x}-\mathrm{a})^{2}+1 /(\mathrm{x}-\mathrm{a})^{2}-2=16$
$\Rightarrow(\mathrm{x}-\mathrm{a})^{2}+1 /(\mathrm{x}-\mathrm{a})^{2}=18$
10. $\boldsymbol{\operatorname { c o s }} \theta /(1-\sin \theta)-\sin \theta / \cos \theta$
$=\cos ^{2} \theta-\sin \theta(1-\sin \theta) /((1-\sin \theta) \cos \theta)$
$=\left(\cos ^{2} \theta+\sin ^{2} \theta-\sin \theta\right) /((1-\sin \theta) \cos \theta)$
$=1 / \cos \theta=1 / \mathrm{A}$
11. Since $(44-38)=6,(55-49)=6,(64-58)=6$

The required number $=\operatorname{LCM}$ of $(44,55,64)-6=3520-6$ $=3514$
12. $1+\cot ^{2} 36-\operatorname{cosec}^{2} 54+\sec ^{2} 36-\sec ^{2} 54$
$\operatorname{cosec}^{2} 36-\operatorname{cosec}^{2} 54+\operatorname{cosec}^{2} 54-\operatorname{cosec}^{2} 36=0$
13. Option 2

Gas bill paid by Mohit for the given period $=3287$
Gas bill paid by Mohan for the given period $=3695$
Required percentage $=[(3695-3287) / 3695] * 100=11.04 \%$
14. Option 4

Amount paid by Manoj in the month of March on utility bills $=1771$

Amount paid by Manoj in the month of May on utility bills $=1824$

Required difference $=53$
15. Option 3

February $=[(495-487) / 495] * 100=1.61 \%$
March $=[(502-487) / 487] * 100=3.08 \%$
April $=[(502-489) / 502] * 100=2.58 \%$
May $=[(489-485) / 489] * 100=0.82 \%$
16. Option 3

Telephone bill paid by all the three person in January = 1568

Telephone bill paid by all the three person February $=$ 1610

Telephone bill paid by all the three person March $=1566$
Telephone bill paid by all the three person April $=1796$
Telephone bill paid by all the three person May = 1881
17. Work done by \mathbf{A} in a day $=\mathbf{1 / 1 0}$

Work done by B in a day $=1 / 10 \times 4 / 10=1 / 25$
Work done by C in a day $=1 / 10 \times 5 / 10=1 / 20$
Work done by B and C in 5 days $=5 \times(1 / 25+1 / 20)=9 / 20$
Remaining work $=11 / 20$
Time taken by A to finish the remaining work $=11 / 20 \times 10$ $=11 / 2$ days

Total time $=5+11 / 2=21 / 2=10.5$ days
18.

Area of the $A B C D=$ Area of $\triangle A C D+$ Area of $\triangle A B C$
By applying Pythagoras theorem, $\mathrm{AD}=\sqrt{(625-400)}=15$
cm
Area of $\triangle \mathrm{ACD}=1 / 2 \times 15 \times 20=150 \mathrm{sq} . \mathrm{cm}$
Area of $\triangle \mathrm{ABC}=\sqrt{3} / 4 \times 25^{2}=0.433 \times 625=270.625 \mathrm{sq} . \mathrm{cm}$ Therefore, area of quadrilateral $\mathrm{ABCD}=420.63 \mathrm{sq} \mathrm{cm}$
19. $a+1 / a+2=0$
$=>a^{2}+1+2 a=0$
$=>(a+1)^{2}=0$
$\Rightarrow \mathrm{a}=-1$
Now $a^{36}-1 / a^{49}$
$=1-(-1)=2$
20.
$\angle A=39^{\circ}, \angle B=75^{\circ}$.
$\angle \mathrm{C}=66^{\circ}$
$\angle \mathrm{E}=24^{\circ}$
$\mathrm{EF}=\mathrm{EG}$, hence $2 x+24^{\circ}=180^{\circ}$
=> $x=78^{\circ}$
21. Total age of five member of a family $=24 * 5=120$

Total age of the four members at the time of the birth of the youngest member $=120-8^{*} 5=80 \mathrm{yr}$

Hence, required average age $=80 / 4=20 \mathrm{yrs}$
22. Let sum $=P$ and original rate $=R$.

Then, $[(\mathrm{P} \times(\mathrm{R}+2) \times 3) / 100]-[(\mathrm{P} \times \mathrm{R} \times 3) / 100]=420$
$\Rightarrow 3 \mathrm{PR}+6 \mathrm{P}-3 \mathrm{PR}=42000$
\Rightarrow $6 \mathrm{P}=42000$
$=>P=7000$
23. Lead in $4 \mathbf{k g}=2 \mathbf{~ k g}$

Tin in $4 \mathrm{~kg}=2 \mathrm{~kg}$
Lead in $5 \mathrm{~kg}=5 / 6 \mathrm{~kg}$
Tin in $5 \mathrm{~kg}=25 / 6 \mathrm{~kg}$
Lead in mixture $=2+5 / 6=17 / 6$
Tin in mixture $=2+25 / 6=37 / 6$
Required ratio $=17: 37$
24. Speed of boat $=10 \mathbf{~ k m} / \mathrm{h}$

Let the speed of flow of river $=x \mathrm{~km} / \mathrm{h}$
Upstream speed $=(10-x) \mathrm{km} / \mathrm{h}$
Downstream speed $=(10+x) \mathrm{km} / \mathrm{h}$
So, $91 /(10-x)+91 /(10+x)=20$
$91=100-\mathrm{x}^{2}$
$\mathrm{x}^{2}=9$
$\mathrm{x}=3 \mathrm{~km} / \mathrm{hr}$
25. $\mathbf{4 5 \%}$ of $(x-y)=\mathbf{3 0 \%}$ of $(x+y)$
$=>45 / 100(x-y)=30 / 100(x+y)$
$=>3(\mathrm{x}-\mathrm{y})=2(\mathrm{x}+\mathrm{y})$
$\Rightarrow 3 \mathrm{x}-3 \mathrm{y}=2 \mathrm{x}+2 \mathrm{y}$
=> $\mathrm{x}=5 \mathrm{y}$
Let A\% of $\mathrm{x}=\mathrm{y}$
Required percentage $=(\mathrm{y} / \mathrm{x} \times 100) \%=(\mathrm{y} / 5 \mathrm{y} \times 100) \%=20 \%$

