Math Practice Set - 3 By Alok Sir

1. So, $m x^{3}+4 x^{2}+6 x+2$ is zero for $x=-2$
$\mathrm{m}(-2)^{3}+4^{*}(-2)^{2}+6 *(-2)+2=0$
$-8 \mathrm{~m}+16-12+2=0$
$-8 m=-6$
$\mathrm{m}=(3 / 4)$.
2. $x+4 / 5 x=2$
$\Rightarrow 5 x^{2}+4=10 \mathrm{x}$
$=>40 \mathrm{x} /\left(10 \mathrm{x}^{2}+8\right)=40 \mathrm{x} / 2\left(5 \mathrm{x}^{2}+4\right)=40 \mathrm{x} / 20 \mathrm{x}=2$
3. $(\boldsymbol{\operatorname { t a n }} \theta+\boldsymbol{\operatorname { c o t }} \theta)^{2}=\mathbf{1 6}$
$\tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \cot \theta=16$
$\tan ^{2} \theta+\cot ^{2} \theta=14$
4. diameter $=\mathbf{2 8 0} \mathbf{m}$. So, radius $=\mathbf{2 8 0} / \mathbf{2}=\mathbf{1 4 0} \mathbf{m}$

The area of the lane $=$
$\pi(140+7)^{2}-\pi(140)^{2}$
$=\pi\left(147^{2}-140^{2}\right)=\pi(21609-19600)=22 / 7 \times 2009=6314$
Thus, required amount $=6314 \times 2=12628$
5. Let, the value of each instalment be Rs.x.

Then, $x /(1+20 / 100)+x /(1+20 / 100)^{2}=7150$
Or, $5 \mathrm{x} / 6+25 \mathrm{x} / 36=7150$
Or, $(30 \mathrm{x}+25 \mathrm{x}) / 36=7150$
Or, $55 \mathrm{x}=7150 \times 36$
Or, $x=4680$
6. $\sec Q=5 n$
=> $\mathrm{n}=\mathrm{sec} \mathrm{Q} / 5$
$\tan Q=5 / n$
$\Rightarrow 1 / n=\tan Q / 5$
$5\left(\mathrm{n}^{2}-1 / \mathrm{n}^{2}\right)=5\left[\mathrm{sec}^{2} \mathrm{Q} / 25-\tan ^{2} \mathrm{Q} / 25\right]$
$=5 \times 1 / 25=1 / 5$
7. $\mathrm{x} / 2=\mathrm{y} / 7=\mathrm{z} / 9=\mathrm{k}$ (let)

Then, $\mathrm{x}=2 \mathrm{k},=7 \mathrm{k}, \mathrm{z}=9 \mathrm{k}$
then, $(\mathrm{x}+\mathrm{y}+\mathrm{z})^{2} / \mathrm{xz}$
$=(2 \mathrm{k}+7 \mathrm{k}+9 \mathrm{k})^{2} / 18 \mathrm{k}^{2}$
$=324 \mathrm{k}^{2} / 18 \mathrm{k}^{2}=18$
8. $(x+1 / x)^{2}=x^{2}+1 / x^{2}+2=x^{2}+1 / x^{2}-2+4$
$=(x-1 / x)^{2}+4=20$
So, $x+1 / x=\sqrt{20}=2 \sqrt{5}$
9. $\because \angle B O C=136^{\circ}$
$=>\angle \mathrm{BAC}=1 / 2 \angle \mathrm{BOC}=68^{\circ}$
In cvclic nuadrilateral ABCD ,
$\angle B A C+\angle B D C=180^{\circ}$
$=>\angle B D C=180^{\circ}-68^{\circ}=112^{\circ}$
10. We know $\sin \left(90^{\circ}-A\right)=\cos A$

Therefore, $\sin ^{2} 10^{\circ}+\sin ^{2} 20^{\circ}+\sin ^{2} 30^{\circ}+. .+\sin ^{2} 90^{\circ}$
$=\sin ^{2} 10^{\circ}+\sin ^{2} 20^{\circ}+\sin ^{2} 30^{\circ}+\sin ^{2} 40^{\circ}+\cos ^{2} 40^{\circ}+\cos ^{2}$
$30^{\circ}+\cos ^{2} 20^{\circ}+\cos ^{2} 10^{\circ}+\sin ^{2} 90^{\circ}$
$=\left(\sin ^{2} 10^{\circ}+\cos ^{2} 10^{\circ}\right)+\left(\sin ^{2} 20^{\circ}+\cos ^{2} 20^{\circ}\right)+\left(\sin ^{2} 30^{\circ}+\right.$
$\left.\cos ^{2} 30^{\circ}\right)+\left(\sin ^{2} 40^{\circ}+\cos ^{2} 40^{\circ}\right)+\sin ^{2} 90^{\circ}$
$=1+1+1+1+1=5$
11. Clearly, the two will meet when they cover a distance of $\mathbf{2 3 5 2} \mathbf{~ m}$ together.
Theire relative speed $=(10.6+9)=19.6 \mathrm{~km} / \mathrm{h}$
=> To cover 19.6 km , they take 1 hour.
\Rightarrow To cover 2352 m , they take $=(2352 * 60) /(19.6 * 1000)$
$=7.2$ minutes.
12. Let CP be \mathbf{C}.
$\mathrm{MP}=1.2 \mathrm{C}$
$\mathrm{SP}=1.2 \times 0.9 \mathrm{C}=1.08 \mathrm{C}=1879.2$
=> C = Rs. 1740
Now new SP = 1513.8
Loss $\%=(1740-1513.8) / 1740 \times 100=13 \%$
13. Let the original price of sugar $=$ Rs. \boldsymbol{x} per kg

Reduced price of sugar $=80 \%$ of $\mathrm{x}=$ Rs. $4 \mathrm{x} / 5$ per kg
$36 /(4 x / 5)-36 / x=1 / 2$
=> $45 / \mathrm{x}-36 / \mathrm{x}=1 / 2$
=> $9 / \mathrm{x}=1 / 2$
=> x = Rs. 18 per kg
14. Work done by $\mathbf{1 2}$ males in $\mathbf{1 8}$ days = work done by $\mathbf{1 2}$
females in 24 days
$=>12 \mathrm{M} \times 18=12 \mathrm{~F} \times 24$
=> $3 \mathrm{M}=4 \mathrm{~F}$
Therefore 10 males +8 females $=10 \mathrm{M}+8 \mathrm{~F}$
$=10 \mathrm{M}+6 \mathrm{M}(\because 3 \mathrm{M}=4 \mathrm{~F})$
$=16 \mathrm{M}$
We need to find work done by 16 M -
Now 12 males do work in 18 days then 16 males do the same work in 'd' days

Use formula, $\mathrm{M}_{1} \mathrm{D}_{1}=\mathrm{M}_{2} \mathrm{D}_{2}$
=> $12 \times 18=16 \times \mathrm{D}$
$\Rightarrow \mathrm{D}=27 / 2$
\Rightarrow D = $131 / 2$
15. We know that

AO/OD = OC/OB
$3 /(x-5)=(x-3) /(3 x-19)$
$\Rightarrow 9 x-57=x^{2}-8 x+15$
$\Rightarrow x^{2}-17 x+72=0$
$=>(x-8)(x-9)=0$
$\Rightarrow x=8$ or 9
16. CP of 1 lock = Rs. 34/8

SP of 1 lock = Rs. 57/12
Gain $=57 / 12-34 / 8=(114-102) / 24=1 / 2$
Gain percent $=100 \times(1 / 2) /(34 / 8)=400 / 34=11.76 \%$
17. Area of rhombus $=0.5 * d_{1} * d_{2}(d 1, d 2$ are the length of the diagonals)
$=>120=0.5 * \mathrm{~d}_{1} * \mathrm{~d}_{2}$
$=>\mathrm{d}_{2}=10($ as $\mathrm{d} 1=24)$
\Rightarrow Now $\mathrm{AC}=24$, Therefore $\mathrm{AO}=12$
$\Rightarrow \mathrm{BD}=10$, Therefore $\mathrm{BO}=5$
$=>$ In right angled triangle AOB

$$
\begin{aligned}
& =>\mathrm{AO}^{2}+\mathrm{BO}^{2}=\mathrm{AB}^{2} \\
& =>12^{2}+5^{2}=\mathrm{AB}^{2} \\
& =\mathrm{AB}=13
\end{aligned}
$$

18. In a $\triangle \mathrm{ABC}$,
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}$
$\triangle A B C$ is a right angled triangle and
$\angle \mathrm{BAC}=90^{\circ}$
And $\mathrm{BC}=\sqrt{2} \mathrm{AB}$
From eqs. (i) and (ii),
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AB}^{2}$
$\Rightarrow A C^{2}=\mathrm{AB}^{2} \Rightarrow \mathrm{AC}=\mathrm{AB}$
$\Rightarrow \triangle A B C$ is an isosceles triangle.
Hence, $\angle \mathrm{ABC}=\angle \mathrm{ACB}=45^{\circ}$
19. Sum of the temperature for the first three days $\mathbf{=} 22$ * $3=66^{\circ} \mathrm{C}$

Sum of the temperature for the next three days $=24 * 3=$ $72^{\circ} \mathrm{C}$

Total temperature for the whole week $=23.5 * 7=164.5^{\circ} \mathrm{C}$
Last day temperature $=(164.5-66-72)^{\circ}=26.5^{\circ} \mathrm{C}$
20. Total number of employees in the year is $1999=345$, $2000=442$
$2001=708$
$2002=750$
$2003=821$
$2004=825$
Clearly figure of 2001 is more than the double figure of the year 1999
21. The required percentage:
$1999=150 / 345 \times 100=43.48 \%$
$2000=225 / 442 \times 100=50.90 \%$
$2001=450 / 708 \times 100=63.56 \%$
$2002=470 / 750 \times 100=62.67 \%$
$2003=500 / 821 \times 100=60.90 \%$
$2004=505 / 825 \times 100=61.21 \%$
Clearly the number of employees working in the production department exceeds 60% of the total strength in the year 2001,2002, 2003 and 2004
22. Total number of employees in corporate department $=\mathbf{5 0}+\mathbf{4 5}+\mathbf{3 0}+\mathbf{3 2}+\mathbf{3 5}+\mathbf{4 0}=\mathbf{2 3 2}$
Total number of employees in marketing department $=25$ $+40+65+73+80+75=358$

Required $\%=232 / 358 \times 100=64.80 \%$
23. As can be seen, only marketing department had less than 10% of the employees through all the years.
24. $\tan A=\frac{1-\cos B}{\sin B}=\frac{2 \sin ^{2}(B / 2)}{2 \sin (B / 2) \cos (B / 2)}=\frac{\sin (B / 2)}{\cos (B / 2)}$
$=\tan (\mathrm{B} / 2)$
So, $\mathrm{A}=\mathrm{B} / 2$ and $2 \mathrm{~A}=\mathrm{B}$
so $\tan (2 \mathrm{~A})=\tan \mathrm{B}$
25. Let 7 years ago, ages of P and Q are $4 x$ and $5 x$,
$(4 x+7+7) /(5 x+7+7)=5 / 6$
$24 \mathrm{x}+84=25 \mathrm{x}+70$
$\mathrm{x}=14$
Hence, Q's present age $=5 * 14+7=77 \mathrm{yr}$

