Practice Set-1 Solution

1. Initial amount of sugar in the solution $=\mathbf{4 5 \%}$ of 500 $\mathbf{g m}=(0.45 \times 500)=\mathbf{2 2 5} \mathbf{g m}$
Let's assume ' x ' gm sugar added in order to have 60% solution.

Hence according to the question, $((225+\mathrm{x}) /(500+\mathrm{x}) * 100=$ 60

$$
\begin{aligned}
& \Rightarrow>225+x=0.6(500+x) \\
& \Rightarrow>225+x=300+0.6 \mathrm{x} \\
& \Rightarrow>0.4 \mathrm{x}=75 \\
& =>x=187.5 \mathrm{gm}
\end{aligned}
$$

2. Total such numbers $=$ Numbers divisible by $5+$

Numbers divisible by 17 - Numbers divisible by 85
Numbers from 35 to 289 (including both these numbers) which are divisible by $5=35,40,45, \ldots . ., 285$

$$
\mathrm{n}=[(285-35) / 5]+1=51
$$

Numbers from 35 to 289 (including both these numbers) which are divisible by $17=51,68,85, \ldots . ., 289$
$\mathrm{n}=[(289-51) / 17]+1=15$
Numbers from 35 to 289 (including both these numbers) which are divisible by $85=85,170,255=3$

Total numbers from 35 to 289 (including both these numbers) which are divisible by 5 or $17=51+15-3=63$
3. A polynomial is divisible by $x-3$ if its value is zero
for $x=3$
From option (1)
$4 \mathrm{x}^{3}-6 \mathrm{x}^{2}-7 \mathrm{x}-5=4(3)^{3}-6(3)^{2}-7(3)-5$
$=108-54-21-5=28$
From option (2)
$2 \mathrm{x}^{3}-3 \mathrm{x}^{2}-4 \mathrm{x}-9=2(3)^{3}-3(3)^{2}-4(3)-9$
$=54-27-12-9=6$
From option (3)
$x^{4}-8 x^{2}-x-7=(3)^{4}-8(3)^{2}-(3)-7$
$=81-72-3-7=-1$
From option (4)
$3 x^{3}-6 x^{2}-5 x-12=3(3)^{3}-6(3)^{2}-5(3)-12$
$=81-54-15-12=0$
4. $2 x-1 / 5 x=5=>10 x^{2}-1=25 x .[x \neq 0]$

Now, $1000 x^{6}-1=\left(10 x^{2}\right)^{3}-1^{3}=\left(10 x^{2}-1\right)\left(100 x^{4}+10 x^{2}+1\right)$
$=25 \mathrm{x}\left(\left(10 \mathrm{x}^{2}\right)^{2}-2 \times 10 \mathrm{x}^{2} \times 1+1^{2}+30 \mathrm{x}^{2}\right)$
$=25 \mathrm{x}\left(\left(10 \mathrm{x}^{2}-1\right) 2+30 \mathrm{x}^{2}\right)$
$=25 \mathrm{x}\left((25 \mathrm{x})^{2}+30 \mathrm{x}^{2}\right)$
$=25 \mathrm{x}\left(625 \mathrm{x}^{2}+30 \mathrm{x}^{2}\right)$
$=25 \times 655 \mathrm{x}^{3}$
$\therefore\left(1000 \mathrm{x}^{6}-1\right) / 25 \mathrm{x}^{3}=\left(25 \times 655 \mathrm{x}^{3}\right) / 25 \mathrm{x}^{3}=655$
5. Length of roll = circumference of cylinder
$2 \pi r=66$
$=>\mathrm{r}=66 \times 7 /(22 \times 2)=10.5 \mathrm{~cm}$
Volume of the cylinder $=\pi \mathrm{r}^{2} \mathrm{~h}=22 / 7 \times 10.5 \times 10.5 \times 25$ $=8662.5 \mathrm{~cm} \geq$
6. Let W, X, Y and Z be the points at which $P Q, Q R, R S$ and $S P$ touch the circle respectively.

$\mathrm{PZ}=\mathrm{PW}=\mathrm{p}$
$S Z=S Y=q$
$\mathrm{QR}=\mathrm{QX}=\mathrm{r}$
$R X=R Y=s$
$P Q+R S=p+r+s+q=a+b$
$\mathrm{PS}+\mathrm{QR}=\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}=\mathrm{a}+\mathrm{b}$
7. $\sin (90-(30-\theta))-\boldsymbol{\operatorname { c o s }}(\mathbf{3 0}-\theta)$
$=\cos (30-\theta)-\cos (30-\theta)=0$
8. $[\sqrt{x}-(1 / \sqrt{x})]^{2}=\mathrm{x}+1 / \mathrm{x}-2$
$=5+2 \sqrt{6}-2+1 /(5+2 \sqrt{6})$
$=3+2 \sqrt{6}+(5-2 \sqrt{6}) /(5-2 \sqrt{6})(5+2 \sqrt{6})$
$=3+2 \sqrt{6}+(5-2 \sqrt{6}) /(25-24)$
$=3+2 \sqrt{6}+5-2 \sqrt{6}=8$
$\sqrt{x}-(1 / \sqrt{x})=\sqrt{8}=2 \sqrt{2}$
9. Ratish types $24 / 3=8$ pages per hour

Shamik types $45 / 9=5$ pages per hour
Together they can type $8+5=13$ pages per hour.
So together they will take $351 / 13 \times 1=27$ hours.
10. $p^{2}-3 p+2=0$
$p^{2}-2 p-p+2=0$
$p(p-2)-1(p-2)=0$
$(p-2)(p-1)=0$
$\mathrm{p}=2,1$
Then, for $p=2, p^{2}-p=4-2=2$
and for $p=1, p^{2}-p=1-1=0$
11. Let the cost price per gram be Re 1 .

CP of $950 \mathrm{gm}=$ Rs 950 .
SP of $950 \mathrm{gm}=\mathrm{CP}$ of $1000 \mathrm{gm}=$ Rs 1000
$\because \mathrm{x}=1000 \mathrm{gm}$ and $\mathrm{y}=950 \mathrm{gm}$
Gain percentage $=100 \times(1000-950) / 950=100 / 19 \%$
12. Let the length of the parallel sides be 5 L and 7 L .

Area $=1 / 2(a+b) \times h$
$336=1 / 2(5 \mathrm{~L}+7 \mathrm{~L}) \times 14$
$\mathrm{L}=336 \times 2 /(12 \times 14)=4$
Hence, length of required side $=5 \times 4=20 \mathrm{~cm}$
13. $\boldsymbol{\operatorname { t a n }} 1^{\circ} \boldsymbol{\operatorname { t a n }} 2^{\circ} \boldsymbol{\operatorname { t a n }} 3^{\circ} \ldots . \boldsymbol{\operatorname { t a n }} 89^{\circ}$
$=\tan \left(90^{\circ}-89^{\circ}\right) \tan \left(90^{\circ}-88^{\circ}\right) \ldots . . \tan 88^{\circ} \tan 89^{\circ}$
$=\cot 89^{\circ} \cot 88^{\circ} \ldots \tan 45^{\circ} \ldots \tan 88^{\circ} \tan 89^{\circ}$
Since $\cot 89=1 / \tan 89, \cot 89 \times \tan 89=1$.
Similarly, cot $88 \times \tan 2=1, \ldots \cot 46 \times \tan 44=1$
So, the product $=1 \times \tan 45=1$
14. Total age of $\mathbf{3 5}$ students of the class $=\mathbf{1 6} \times \mathbf{3 5} \mathbf{- 5 6 0}$

Total age of 21 students $=21 \times 14=294$

Total age of the remaining 14 students $=560-294=266$
Hence, average age of these 14 students $=266 / 14=19$
15. $(100+G) /(100+x)=$ true weight/ false weight
$(100+G) / 110=1000 / 950$
Or G = 15(15/19) \%
16. Let the sum be Rs. y.

Simple interest incurred on Rs. $y=(y \times r \times t) / 100$
$=(\mathrm{y} \times 4 \times 8) / 100=32 \mathrm{y} / 100$
$\mathrm{y}-32 \mathrm{y} / 100=68 \mathrm{y} / 100$
When interest is $68 y / 100$ less, the sum is Rs.y.
When sum is 3400 less, the sum is $340 * y /(68 y / 100)$
$=$ Rs. 5000
17. $\left(1 / \sec ^{2} 27^{\circ}\right)+\cos ^{2} 63^{\circ}+\cot ^{2} 27^{\circ}-\left(1 /\left(\cos ^{2} 27^{\circ} * \operatorname{cosec}^{2} 63^{\circ}\right)\right)$
$=\cos ^{2} 27^{\circ}+\cos ^{2} 63^{\circ}+\cot ^{2} 27^{\circ}-\sin ^{2} 63 / \cos ^{2} 27^{\circ}$
$=\sin ^{2} 63^{\circ}+\cos ^{2} 63^{\circ}+\tan ^{2} 63^{\circ}-\sin ^{2} 63^{\circ} / \sin ^{2} 63^{\circ}$
$=1+\tan ^{2} 63^{\circ}-1=\tan ^{2} 63^{\circ}=\sec ^{2} 63^{\circ}-1=\mathrm{p}^{2}-1$
18. It is given that $A: B=2: 3$ and $B: C=5: 8$

Combined ratio of A : B : C will be $10: 15: 24$
Since A $+B+C=98$
$10 \mathrm{x}+15 \mathrm{x}+24 \mathrm{x}=49 \mathrm{x}$
$x=98 / 49=2$
Therefore, $\mathrm{A}=20$
$\mathrm{B}=30$ and $\mathrm{C}=48$.
19. Angle subtended by the diameter on any part of the circumference $=90^{\circ}$. $\mathrm{So}, \angle \mathrm{ABC}=90^{\circ}$
Now, $\mathrm{AB}: \mathrm{BC}=3: 4$ and $\mathrm{AB}=15 \mathrm{~cm}$. So $\mathrm{BC}=20 \mathrm{~cm}$
Using the Pythagoras Theorem,
$\mathrm{AC}=\sqrt{\left(A B^{2}+B C^{2}\right)}=\sqrt{(225+400)}=25 \mathrm{~cm}$
Radius $=\mathrm{AC} / 2=12.5 \mathrm{~cm}$
20. The relative speed of train is $64-54=10 \mathrm{Km} / \mathrm{hr}=10 \times$ $\mathbf{5 / 1 8}=\mathbf{2 5} / 9 \mathrm{~m} / \mathrm{s}$
In 18 secs the total distance travelled is $18 \times 25 / 9=50 \mathrm{~m}$.

Therefore the length of each train is $=50 / 2=25 \mathrm{~m}$.
21. The required aggregate $=135+126+114+98+64+40=$ 577
22. The required marks:
$=123+140+(96 \times 150 / 120)+(110 \times 150 / 120)+(77 \times$ $150 / 100)+(46 \times 150 / 50)$
$=123+140+120+137.5+115.5+138=774$
23. The total marks obtained by $B=101+\mathbf{1 3 3}+\mathbf{8 2 + 1 0 5 +}$ $\mathbf{9 2}+\mathbf{3 6}=\mathbf{5 4 9}$
The total marks obtained by $\mathrm{E}=95+125+87+108+61+$ $42=518$

Therefore, the required difference $=(549-518)=31$
24. Candidate B's percentage in Physics and Music $=$ $(82+36) /(50+120) \times 100$
$=118 / 170 \times 100=69.41 \%$
Candidate D's percentage in Geography and English = $(100+95) /(150+100) \times 100$
$=195 / 250 \times 100=78 \%$
The required difference $=78-69.41=8.59 \%$
25.

$\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ}-\angle \mathrm{A}$
$=>\angle \mathrm{BOC}+\angle \mathrm{OBC}+\angle \mathrm{OCB}=180^{\circ}$
$=>\angle \mathrm{BOC}+1 / 2(\angle \mathrm{ABC}+\angle \mathrm{ACB})=180^{\circ}$
$=>\angle \mathrm{BOC}+1 / 2\left(180^{\circ}-\angle \mathrm{A}\right)=180^{\circ}$
$=>\angle \mathrm{BOC}=90^{\circ}+1 / 2 \angle \mathrm{~A}$

