GUPTA CLASSES

A PREMIER INSTITUTE FOR BANK PO/SSC/MCA/MBA-CAT ENTRANCE ACADEMY

Mensurat	ion Ass	ignment -1

Mensuration Assignment -1											
1	Α	9	С	17	В	25	В	33	С		
2	С	10	С	18	В	26	D	34	С		
3	В	11	С	19	D	27	Α	35	В		
4	В	12	Α	20	Α	28	D	36	D		
5	Α	13	С	21	С	29	В	37	С		
6	D	14	С	22	С	30	В	38	С		
7	Α	15	Α	23	С	31	D	39	Α		
8	С	16	Α	24	Α	32	В	40	Α		

1. (A)

. (1) Side of one square = $\frac{40}{4}$ = 10

[\cdot :Perimeter = 4 × side]

Side of other square = $\frac{32}{4}$

= 8 cm

According to the question,

Area of third square

- $=(10)^2-(8)^2=100-64$
- = 36 sq.cm.

Side of third square = $\sqrt{36}$

= 6 cm.

Its perimeter = $4 \times 6 = 24$ cm.

(C) Sides of the squares are 6 cm. 8 cm, 10 cm, 19 cm and 20 cm respectively.

Sum of their areas = $(6^2 + 8^2 + 10^2 + 19^2 + 20^2)$ cm²

- =(36+64+100+361+400)cm²
- $= 961 \text{ cm}^2$
- :. Area of largest other square

 $= 961 \text{ cm}^2$

- \therefore Its side = $\sqrt{961}$ = 31 cm
- .. Required perimeter
- $= 4 \times 31 = 124$ cm.
- 3. (b) Let the side of square be a units. Area of this square $=a^2$

The diagonal of square

- $=\sqrt{2}a$
- \therefore Area of square = $2a^2$
- \therefore Required ratio = $a^2 : 2a^2$
- = 1:2
- 4. (b)

(2) Side of the first square

$$=\frac{40}{4}=10$$
 cm

Side of the second square

$$=\frac{24}{4}=6$$
 cm

Difference of the areas of these squares

- $= (10 \times 10 6 \times 6) \text{ cm}^2$
- $= (100 36) \text{ cm}^2$
- $= 64 \text{ cm}^2$
- :. Area of the third square
- $= 64 \text{ cm}^2$
- :. Side of third square
- $= \sqrt{64} = 8$ cm
- .. Perimeter of this square
- $= (4 \times 8)$ cm
- = 32 cm

5. (a)

Area of the rectangular garden $=12\times5=60 \text{ m}^2$

=Area of the square garden
So that side of the square garden

$$==\sqrt{60}m^2$$

- $=\sqrt{2}\times side$
- $=\sqrt{2}\times\sqrt{60}=\sqrt{120}=\sqrt{14\times30}=2\sqrt{30}$ cm

6. (d)

BD = length of diagonal

- = speed \times time
- $=\frac{52}{60} \times 15 = 13$ metre

$$= \sqrt{l^2 + b^2}$$

$$\Rightarrow l^2 + b^2 = 169$$

Again,

$$(l + b) = \frac{68}{60} \times 15 = 17$$
 ...(ii)

$$(l + b)^2 = l^2 + b^2 + 2lb$$

$$\Rightarrow 17^2 = 169 + 2 lb$$

 $\Rightarrow 2 lb = 289 - 169 = 120$

$$\Rightarrow lb = \frac{120}{2} = 60 \text{ m}^2$$

7. (a)

Area of garden without street = 200 × 180 = 36000 sq.metre Area of garden with street = 220 × 200 = 44000 sq.metre

- : Area of the path
- = 44000 36000
- = 8000 sq.metre

8. (c)

 $3^2 + 4^2 = 5^2$

Δ ABC is a right angled trial


$$\therefore ABC = \frac{1}{2} \times AB \times BC$$

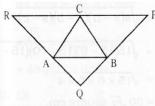
$$=\frac{1}{2} \times 3 \times 4 = 6$$
cm²

∴ Required Area of ∆ DEF

$$=\frac{1}{4} \times 6 = \frac{3}{2}$$
 sq.cm.

9. (c)

AB = AC = 10 cm


$$\therefore \text{ Area} = \frac{1}{2} \text{ bc sin A}$$

$$= \frac{1}{2} \times 10 \times 10 \sin 45^{\circ}$$

$$= \frac{50}{\sqrt{2}} = \frac{50 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = 25\sqrt{2} \text{ cm}^2$$

10. (c)

A PREMIER INSTITUTE FOR BANK PO/SSC/MCA/MBA-CAT ENTRANCE ACADEMY

AQ | CB, and AC | QB

: AQBC, is a parallelogram

 \Rightarrow BC = AQ

Again, AR | | BC and AB | | RC

: ARCB, is a parallelogram.

 \Rightarrow BC = AR

 \Rightarrow AQ = AR

$$\Rightarrow$$
 AQ = AR = $\frac{1}{2}$ QR

$$\Rightarrow$$
 BC = $\frac{1}{2}$ QR

Similarly, $AB = \frac{1}{2}PR$ and

$$AC = \frac{1}{2}PQ$$

:. Required ratio

11. (c) Semi perimeter(s) =9+10+11/2=15 cm.

Area of triangle

$$= \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{15(15-9)(15-10)(15-10)}$$

$$=\sqrt{15\times6\times5\times4}$$

= $30\sqrt{2}$ square cm.

12. (a)

(1) Let the sides of triangle be a, b and c respectively.

 $\therefore 2s = a + b + c = 32$

2s = a + b + c = 32 $\Rightarrow 11 + b + c = 32$

$$\Rightarrow b + c = 32 - 11 = 21$$
(i)

and b - c = 5(ii

By adding equations (i) and (ii)

 $2b = 26 \Rightarrow b = 13$

$$c = 13 - 5 = 8$$

 $\therefore 2s = 32 \Rightarrow s = 16$

a = 11, b = 13, c = 8

.. Area of triangle

 $= \sqrt{s(s-a)(s-b)(s-c)}$

 $=\sqrt{16(16-11)(16-13)(16-8)}$

 $=\sqrt{16\times5\times3\times8}$

 $= 8\sqrt{30}$ sq. cm.

13. (c)

A D C

AB = BC = CA = 2a cm

AD \(\text{BC} \)

$$AD = \sqrt{AB^2 - BD^2}$$

$$=\sqrt{4a^2-a^2}=\sqrt{3}a$$

 $\therefore \sqrt{3} a = 15$

$$\Rightarrow a = 5\sqrt{3}$$

$$\therefore 2a = \text{Side} = 10\sqrt{3} \text{ cm}$$

:. Area of triangle

$$= \frac{\sqrt{3}}{4} \times \left(10\sqrt{3}\right)^2$$

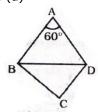
= $75\sqrt{3}$ sq. cm.

14. (c)

$$15^2 + 20^2 = 25^2$$

.. The triangular field is right angled.

:. Area of the field


$$=\frac{1}{2}\times15\times20$$

= 150 sq. metre

.. Cost of sowing seeds

 $= 150 \times 5 = Rs. 750$

15. (a)

Side =
$$\frac{40}{4}$$
 = 10 cm

AB = AD = 10 cm

 \angle ABD = \angle ADB = 60°

.. Area of the rhombus

$$=2\times\frac{\sqrt{3}}{4}\times(AB)^2$$

$$= 2 \times \frac{\sqrt{3}}{4} \times 10 \times 10$$

$$= 50 \sqrt{3} \text{ cm}^2$$

16. (a)

17. (b) Let the sides of parallelogram be 5x and 4x

Base x Height = Area of parallelogram

= Area of parallelogram

 $5x \times 20 = 1000$

$$\Rightarrow x = \frac{1000}{5 \times 20} = 10$$

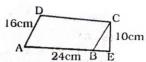
:. Sides = 50 and 40 units

 $... 40 \times h = 1000$

$$\Rightarrow h = \frac{1000}{40} = 25 \text{ units}$$

18. (b)

Area of the parallelogram


= Base × Height

 $= 15 \times 12 = 180$ sq.cm.

 \therefore 180 = 18 × height

⇒ Height = 10 cm

19. (d)

Area of the parallelogram

= Base x Height

 $= 24 \times 10 = 240 \text{ sq.cm}.$

If the required distance be x cm, then

 $240 = 16 \times x$

$$\Rightarrow x = \frac{240}{16} = 15 \text{ cm}$$

20. (a)

Diagonal of cube = $\sqrt{3a^2}$

.. According to question

$$\sqrt{3} a = 2\sqrt{3}$$

 $\Rightarrow a = 2$

 $\therefore \text{ Its volume} = a^3 = 2^3$

= 8 cu cm

21. (c) Required answer =volume of larger cube/volume of

$$=\frac{(15)^3}{(3)^3}=\frac{15\times15\times15}{3\times3\times3}$$

 $= 5 \times 5 \times 5 = 125$

22. (c) Diagonal of a cube

$$=\sqrt{3}\times$$
side

$$4\sqrt{3} = \sqrt{3} \times \text{side}$$

∴ Side = 4 cm

:. Volume of the cube

$$= (side)^3 = (4)^3 = 64 \text{ cm}^3$$

23. (c) Let the side of the two cubes are x and y.

According to the question.

A PREMIER INSTITUTE FOR BANK PO/SSC/MCA/MBA-CAT ENTRANCE ACADEMY

$$\frac{x^3}{y^3} = \frac{27}{64} = \frac{(3)^3}{(4)^3} \therefore \frac{x}{y} = \frac{3}{4}$$

We know that surface area of the cube

- $= 6 \times (\text{side})^2$
- :. Ratio of their surface areas

$$=\frac{6x^2}{6y^2}=\frac{6\times 3^2}{6\times 4^2}=\frac{9}{16}=9:16$$

24. (a) The length of the longest rod The diagonal of the hall.

$$=\sqrt{l^2+b^2+h^2}$$

$$=\sqrt{10^2+6^2+4^2}$$

$$= \sqrt{100 + 36 + 16} = \sqrt{152}$$

$$= \sqrt{2 \times 2 \times 38} = 2\sqrt{38} \text{ m}$$

25. (b) We have

 $2 \times \text{volume}$ of cube = volume of cuboid

- \Rightarrow 2 × (edge)³ = 9 × 8 × 6 cu.cm.
- \Rightarrow (edge)³ = 9 × 8 × 3

$$\Rightarrow$$
 Edge = $\sqrt[3]{3 \times 3 \times 3 \times 2 \times 2 \times 2}$

- $= 3 \times 2 = 6$ cm.
- ⇒ Total surface area of the cube
- $= 6 \times (edge)^2$
- $= 6 \times 6 \times 6 \times 216 \text{ cm}^2$.

26. (d) Length of largest bamboo

$$= \sqrt{(5)^2 + (4)^2 + (3)^2}$$

$$= \sqrt{25 + 16 + 9} = \sqrt{50}$$

$$= \sqrt{25 \times 2} = 5\sqrt{2} \text{ m}$$

27. (b) Let the length of tank = x

Depth =x/3 dm

Breadth =
$$\left(x - \frac{x}{3}\right) \times \frac{1}{3} \times \frac{1}{2}$$

$$=\frac{2x}{3}\times\frac{1}{3}\times\frac{1}{2}=\frac{x}{9}$$
dm

$$= x \times \frac{x}{9} \times \frac{x}{3} = \frac{x^3}{27}$$

According to the ques-tion,

$$\frac{x^3}{27} = 216$$

$$\Rightarrow x^3 = 27 \times 216$$

$$\Rightarrow x = (27 \times 216)^{1/3}$$

$$= 3 \times 6 = 18 \text{ dm}$$

28. (a) The external dimensions of the box are:

Length =20 cm, Breadth =12 cm.

Height=10 cm

External volume of the box

20×12×10=2400 cm³

Thickness of the wood =1 cm Internal length =20-2=18 cm

Internal breadth =12-2=10 cm

Internal height =10-2=8 cm

Internal volume $=18\times10\times8=1440$ cm³

Volume of the wood =(2400-1440) $cm^3 = 960 cm^3$

29. (d) surface area of a small cube $= 6 \times (edge)^2 = 6 \times 1 = 6 cm^2$ Surface area of the large cube =

 $6(5)^2 = 6 \times 25 \text{ cm}^2$ So that required ratio 6/6×25=1/25, i.e., 1:25.

30. (b)

(2) Let the length of the tank be

$$\therefore \text{ Depth} = \frac{x}{3}$$

Breadth=
$$\frac{1}{2} \times \frac{1}{3} \times \left(x - \frac{x}{3}\right)$$

$$x \times \frac{x}{3} \times \frac{x}{9} = 216 \times 1000$$

$$3 \quad 9$$
$$\Rightarrow x^3 = 27 \times 216 \times 1000$$

$$\Rightarrow x = (27 \times 216 \times 1000)^{1/3}$$

$$\Rightarrow x = 3 \times 6 \times 10$$

$$= 180 \text{ cm} = 18 \text{ dm}$$

31. (b)

[2] Volume of cuboid

 $= 9 \times 8 \times 6 = 432 \text{ cm}^2$

According to the question,

Volume of cube

$$= \frac{432}{2} = 216 \text{ cm}^3$$

- Edge of cube = $\sqrt[3]{216}$ = 6 cm.
- .. Total surface area of cube
- $= 6 \times (6)^2 = 216 \text{ cm}^2$
- 32. (d) If the length of the edge of cube be x cm then

diagonal =
$$\sqrt{3}x$$
 cm

$$\therefore \sqrt{3}x = 8\sqrt{3} \Rightarrow x = 8 \text{ cm}$$

:. Surface area of the cube

- $=6x^{2}$
- $=6 \times 8 \times 8$
- = 384 sq. cm
- 33. (b) Length of the longest pole

$$=\sqrt{12^2+8^2+9^2}$$

$$=\sqrt{144+64+81}=\sqrt{289}=17$$

34. (C) Diagonal of the cube

 $= 6\sqrt{3} \text{ cm}$

$$\therefore \sqrt{3} \times \text{edge} = 6\sqrt{3} \text{ cm}$$

$$\Rightarrow$$
 Edge = 6 cm

.: Total surface area : Volume

$$= 6 \times 6^2 : 6^3 = 1 : 1$$

35. (b)

Length of the edge of the box

- $=\sqrt[3]{3.375}$
- $=\sqrt[3]{1.5\times1.5\times1.5}$ = 1.5 Meter

36. (d) Area of the floor =volume of room/Height of room =204/6=34 sq. m.

37. (c)

(3) Volume of cylindrical vessel =

Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

$$\therefore \text{ Number of cones} = \frac{\pi r^2 h}{\frac{1}{3} \pi r^2 h} = 3$$

38. (c) The curved surface of cylinder

 $= 2\pi rh = a$

Area of base = $\pi r^2 = b$

- $\therefore 2\pi rh = a$
- $\Rightarrow 4\pi^2 r^2 h^2 = a^2$
- $\Rightarrow 4\pi bh^2 = a^2$

$$\Rightarrow h^2 = \frac{a^2}{4\pi b}$$

$$\Rightarrow h = \frac{a}{2\sqrt{\pi b}}$$
 cm.

39. (a) Lateral surface area of the inder =

inder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times \frac{7}{2} \times 16$$

= 352 sq.cm.

40. (a)

(1) Area of the curved surf

$$=\frac{1}{3} \times 462 = 154 \text{ sq.cm}$$

$$\therefore 2\pi rh + 2\pi r^2 = 462$$

$$\Rightarrow$$
 154 + $2\pi r^2$ = 462

$$\Rightarrow 2\pi r^2 = 462 - 154 = 308$$

$$\Rightarrow r^2 = \frac{308}{2\pi} = \frac{308 \times 7}{2 \times 22} =$$

$$\Rightarrow r = \sqrt{49} = 7 \text{ cm}$$